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ABSTRACT: A promising approach for simulating rare events with rigorous kinetics is
the weighted ensemble path sampling strategy. One challenge of this strategy is the
division of configurational space into bins for sampling. Here we present a minimal
adaptive binning (MAB) scheme for the automated, adaptive placement of bins along a
progress coordinate within the framework of the weighted ensemble strategy. Results
reveal that the MAB binning scheme, despite its simplicity, is more efficient than a
manual, fixed binning scheme in generating transitions over large free energy barriers,
generating a diversity of pathways, estimating rate constants, and sampling
conformations. The scheme is general and extensible to any rare-events sampling
strategy that employs progress coordinates.

■ INTRODUCTION

Path sampling strategies have been pivotal in enabling the
simulation of pathways and kinetics for rare events such as
protein un(binding),1−6 protein (un)folding,7−10 and mem-
brane permeation.11,12 These strategies exploit the fact that the
time required to cross a free energy barrier (tb) is much shorter
than the dwell time in the preceding stable (or metastable)
state (tb ≪ tdwell) during which the system is “waiting” for a
lucky transition over the barrier.13,14 By focusing the
computational power on the actual transitions between stable
states rather than on the stable states themselves, path
sampling strategies can be orders of magnitude more efficient
than standard simulations in sampling the functional
transitions of rare events without introducing any bias into
the dynamics.15

A major challenge for path sampling strategies has been the
division of configurational space for a rare-event process. The
application of these strategies can therefore be greatly
streamlined by schemes that automate the adaptive placement
of bins along a chosen progress coordinate. Such adaptive
binning schemes have included the use of Voronoi bins16−18

and a variance-reduction approach19 for the weighted
ensemble strategy;20,21 interfaces have also been used as
“bins” to improve flux through bottlenecks between (meta)-
stable states22−24 for nonequilibrium umbrella sampling23 and
forward flux sampling.25

Here, we present a minimal adaptive binning (MAB)
scheme within the framework of the weighted ensemble
strategy. The scheme can be used with high-dimensional

progress coordinates and exhibits the following features: (i) no
prior test simulations or training sets are required as the
scheme relies only on the positions of the trailing and leading
trajectories along the progress coordinate at chosen fixed time
intervals; (ii) fewer bins are required compared with a manual
binning scheme due to earlier identification of bottlenecks
along the progress coordinate; (iii) the maximum number of
CPUs (or GPUs) required is easily estimated prior to running
the simulation since a similar number of bins are occupied
throughout the simulation; and (iv) the scheme is easily
extensible to more sophisticated schemes for adaptive binning.
To demonstrate the power of the adaptive binning scheme,

we applied the algorithm to simulations of the following
processes, in order of increasing complexity: (i) transitions
between states in a double-well toy potential, (ii) molecular
association of the Na+ and Cl− ions, and (iii) conformational
transitions of an N-terminal peptide fragment of the p53 tumor
suppressor.

■ THEORY
Weighted Ensemble Strategy. The weighted ensemble

(WE) strategy involves running many trajectories in parallel
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and applying a resampling procedure at fixed time intervals τ to
populate empty bins in configurational space, typically along a
progress coordinate.20,21 The resampling procedure involves
replicating trajectories that advance toward a target state,
enriching for success in reaching the target state via a
“statistical ratcheting” effect; to save computing time,
trajectories that have not made any progress may be
terminated, depending on which bin they occupy. Importantly,
the rigorous tracking of trajectory weights ensures that no bias
is introduced into the dynamics, thereby enabling the calculation
of nonequilibrium observables such as rate constants.
Furthermore, since the trajectory weights are independent of
the progress coordinate, the progress coordinate as well as bin
positions can be adjusted “on-the-fly” during a WE
simulation.16

WE simulations can be carried out under nonequilibrium
steady-state or equilibrium conditions.26 Nonequilibrium
steady-state trajectories that reach the target state are
“recycled” by terminating the trajectories and starting a new
trajectory from the initial state with the same statistical weight.
Equilibrium trajectories are not recycled, which means that
target states need not be strictly defined in advance of the
simulation.
MAB Scheme. The minimal adaptive binning (MAB)

scheme works by first placing a fixed number of evenly spaced
bins between “boundary” trajectories: the trailing and leading
trajectories along the progress coordinate at a given time. After
laying down these initial bins, the scheme identifies a
“bottleneck” trajectory in each uphill direction of interest
that maximizes the following objective function Z at a given
time:
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where pi is the weight of trajectory i under consideration and
∑ = pj

n
j1 is the cumulative weight of all n trajectories that have

surpassed trajectory i along the progress coordinate in the
direction of interest. The scheme then assigns each boundary
and bottleneck trajectory to a separate bin. In the final step, the
WE strategy replicates and prunes trajectories within the same
bin at fixed time intervals (WE iterations) to maintain a target
number of trajectories per bin; trajectory weights are split or
merged, respectively, according to rigorous statistical rules.16

Figure 1 illustrates the steps of the MAB scheme for a one-
dimensional progress coordinate:

1. Run dynamics for one WE iteration with a fixed interval
τ.

2. Tag boundary and bottleneck trajectories with regard to
the current WE iteration.

3. Adapt bin positions by dividing the progress coordinate
evenly into a specified, fixed number of bins between the
positions of the tagged trailing and leading trajectories;
assign trailing, leading, and bottleneck trajectories to
separate bins.

4. Replicate and prune trajectories to maintain a target
number of trajectories in each bin.

5. Run dynamics with updated bins and repeat steps 1−4.
For a multidimensional progress coordinate, steps 2 and 3

are carried out for each dimension of the progress coordinate.
When multiple bottlenecks exist, replication of the most major
bottleneck trajectory at the current WE iteration enriches for
successful transitions over the corresponding bottleneck,
enabling later bottlenecks along the landscape to be tackled.
To avoid the replication of trajectories outside of the desired
configurational space (e.g., regions of unintentional protein
unfolding), the MAB scheme includes the option to specify
minimum and/or maximum limits of another observable as an
additional dimension to the progress coordinate for the
replication of trajectories. Since the number of trajectories

Figure 1. Illustration of the MAB scheme for adaptive placement of bins along a one-dimensional progress coordinate. The scheme involves five
steps. (1) Run dynamics for a short, fixed time interval τ using initial bins indicated by gray vertical lines. Trajectories are represented by red circles
with sizes that are proportional to their statistical weights. (2) Tag boundary and bottleneck trajectories (highlighted in gold). (3) Adapt bin
boundaries (blue vertical lines) by placing a fixed number of bins evenly between the positions of the trailing and leading trajectories along the
progress coordinate and assigning each boundary and bottleneck trajectory to a separate bin (blue boxes). (4) Replicate and prune trajectories to
maintain a target number of trajectories per bin. (5) Repeat steps 1−4 with updated bin positions until a desired amount of sampling is achieved.
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per bin is fixed and a similar number of bins are occupied
throughout the WE simulation, including separate bins for
boundary and bottleneck trajectories, we can easily estimate
the maximum number of CPUs (or GPUs) required for the
simulation. A Python implementation of the MAB scheme is
available for use with the WESTPA software27 (https://github.
com/westpa/user_submitted_scripts/tree/master/Adaptive_
Binning).

■ METHODS
WE Simulations. All WE simulations were carried out

using the open-source WESTPA software package.27 For each
benchmark system, we compared the efficiency of the MAB
scheme for adaptive binning to a manual, fixed binning
scheme. We present progress coordinates and binning schemes
for each benchmark system below.
Double-Well Toy Potential. The double-well toy potential

consists of two equally stable states separated by a 34 kT free
energy barrier. The potential was defined as

= − × +V kt x
x

/ 60 cos
3.75
sin

2
2

For the manual binning scheme, a one-dimensional progress
coordinate was divided into 20 bins along a theoretical X
position metric ranging from an initial state A at X = 0.5 to a
target state B at X = 2.5; for the MAB scheme, a fixed number
of bins ranging from 5 to 20 was used throughout the WE
simulation for the same progress coordinate at any given time
to determine the impact of the number of bins on the
efficiency of generating successful transitions. For each binning
scheme, a single WE simulation was run with a fixed time
interval τ of 5 × 10−5 for each iteration and a target number of
5 trajectories/bin, yielding a total simulation time of 200 000
δt.
Dynamics were propagated according to the overdamped

Langevin equation:

δ δ
γ

δ+ = − ∇ +X t t X t
t

V X( ) ( ) X
G

where γ is the friction coefficient, δt is the time step, and δXG is
a random displacement with zero mean and variance 2γkTδt
with δt = 5 × 10−5 and reduced units of γ = 1 and kT = 1.
Na+/Cl− System. To sample Na+/Cl− associations in explicit

solvent, 5 independent, nonequilibrium steady-state WE
simulations were carried out for each of the two binning
schemes. A one-dimensional progress coordinate was used
which consisted of the Na+/Cl− separation distance. A total of
28 bins were equally spaced from a maximum value of 20 Å
down to a target state at 2.6 Å. For both binning schemes,
1000 WE iterations were run with a fixed time interval τ of 2 ps
for each iteration and a target number of 4 trajectories/bin,
yielding an aggregate simulation time of 0.2 μs.
Dynamics were propagated using the AMBER18 software

package28 with the TIP3P water model29 and corresponding
Joung and Cheatham ion parameters.30 Simulations were
started from an unassociated state with a 12 Å Na+/Cl−

separation and a truncated octahedral box of explicit water
molecules that was sufficiently large to provide a minimum 12
Å clearance between the ions and box walls. The temperature
and pressure were maintained at 298 K and 1 atm using the
Langevin thermostat (collision frequency of 1 ps−1) and Monte
Carlo barostat (with 100 fs between attempts to adjust the

system volume), respectively. Nonbonded interactions were
truncated at 10 Å, and long-range electrostatics were treated
using the particle mesh Ewald method.31

P53 Peptide. To sample alternate conformations of the p53
peptide (residues 17−29), a single equilibrium WE simulation
was run using each of the two binning schemes and a two-
dimensional progress coordinate that consisted of (i) the
heavy-atom RMSD of the peptide from its MDM2-bound, α-
helical conformation, and (ii) the end-to-end distance of the
peptide. For both binning schemes, the WE simulations were
run using a fixed time interval τ of 50 ps for each iteration and
a target number of 4 trajectories/bin. A total simulation time of
2.0 μs was generated for each binning scheme (338 and 200
WE iterations for the MAB and manual binning schemes,
respectively). The MAB scheme used a maximum of 44 bins
while the manual binning scheme used a maximum of 294 bins
that were evenly spaced between an RMSD of 0 and 20 Å and
end-to-end distance of 0−26 Å. For the MAB scheme, no other
limits were specified for the replication of trajectories.
Dynamics were propagated using the AMBER18 software

package28 with the Amber ff14SBonlysc force field32 and a
generalized Born implicit solvent model (GBneck2 and
mbondi3 intrinsic radii).33 Simulations were started from an
energy-minimized conformation of the peptide that was based
on the crystal structure of the MDM2-p53 peptide complex
(PDB code: 1YCR).34 The temperature was maintained at 298
K using the Langevin thermostat and a collision frequency of
80 ps−1 for water-like viscosity.

Standard Simulations. A total of 5 independent 1 μs
standard MD simulations were run for the Na+/Cl− system,
and a single 2 μs simulation was carried out for the p53
peptide. Details of dynamics propagation and starting
structures for these simulations are the same as those described
above for the WE simulations.

Calculation of Rate Constants. The association rate
constant kRED for the Na+/Cl− system was directly calculated
from the WE simulation using the rate event duration (RED)
scheme:35

=
̂

k
F t

C
( )RED max

where F̂(tmax) is the cumulative probability of transitions from
the unassociated state to the associated state up to the
maximum (longest) trajectory length tmax of the steady-state
WE simulation; C is a correction factor equal to

∫ ∫ ̃h t t t( ) d d
t t

0 0 b b
max , which incorporates the transient phase

of the time evolution of the rate-constant estimate using the
distribution h̃(tb) of event durations (barrier crossing times)
that are less than or equal to tmax.
Uncertainties in the rate constants represent 95% confidence

intervals, which is the standard error of the mean for each
system multiplied by a critical value. For a large sample size
(>30), this critical value would be 1.96, as obtained from a z-
test. However, for the calculations in this study, which involve
a smaller sample size (<30), critical values for determining the
confidence interval at 95% were obtained from a t test using
the appropriate number of degrees of freedom (number of
independent simulations minus 1) for each system.

Estimation of WE Efficiency in Computing Rate
Constants. The efficiency Sk of WE simulations in computing
the association rate constant for the Na+/Cl− system was
estimated using the following:20

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://dx.doi.org/10.1021/acs.jpca.0c10724
J. Phys. Chem. A 2021, 125, 1642−1649

1644

https://github.com/westpa/user_submitted_scripts/tree/master/Adaptive_Binning
https://github.com/westpa/user_submitted_scripts/tree/master/Adaptive_Binning
https://github.com/westpa/user_submitted_scripts/tree/master/Adaptive_Binning
pubs.acs.org/JPCA?ref=pdf
https://dx.doi.org/10.1021/acs.jpca.0c10724?ref=pdf


=
Δ
Δ

i
k
jjjjj

y
{
zzzzzS

t
t

k
kk

BF

WE

BF
2

WE
2

(4)

where tBF/WE is the aggregate simulation time for standard
“brute force” (BF) simulation or WE simulation, respectively,
and ΔkBF/WE is the relative error in the rate constants for the
corresponding simulations where the absolute error is
represented by the 95% confidence interval. Thus, the
efficiency of the WE simulation in calculating the rate constant
is determined by taking the ratio of aggregate times for the WE
and brute force simulations that would be required to estimate
the rate constant with the same relative error, with larger values

of Sk corresponding to a more efficient simulation. The relative
error in the rate constant is assumed to be inversely
proportional to the simulation time.

■ RESULTS

We demonstrate the power of our minimal adaptive binning
(MAB) scheme compared to fixed, manual binning schemes in
the weighted ensemble (WE) sampling of rare events. We
applied the MAB scheme to the following processes, listed in
order of increasing complexity: (i) transitions between stable
states in a double-well toy potential, (ii) molecular associations

Figure 2. Transitions between stable states of a double-well toy potential. (A) The double-well potential and manual binning scheme with 20 bins
indicated by vertical lines. (B) Probability distribution as a function of the WE iteration for a manual binning scheme. (C) Probability distribution
as a function of the WE iteration for the MAB scheme. (D) Probability distribution of bottleneck walkers identified by the MAB scheme using 20
bins at any given time.

Figure 3. Molecular association of the Na+ and Cl− ions. (A) The Na+/Cl− system in explicit solvent. (B) Potential of mean force for the Na+/Cl−

association process with bin positions for the manual scheme indicated by vertical lines. (C) Probability distribution of the positions of bottleneck
trajectories tagged by the MAB scheme along the progress coordinate.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://dx.doi.org/10.1021/acs.jpca.0c10724
J. Phys. Chem. A 2021, 125, 1642−1649

1645

https://pubs.acs.org/doi/10.1021/acs.jpca.0c10724?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c10724?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c10724?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c10724?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c10724?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c10724?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c10724?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c10724?fig=fig3&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://dx.doi.org/10.1021/acs.jpca.0c10724?ref=pdf


of the Na+ and Cl− ions, and (iii) conformational sampling of a
peptide fragment of tumor suppressor p53.
Simulations with a Double-Well Toy Potential. To test

how effectively the MAB scheme performs for a process with a
large free energy barrier, we focused on a double-well toy
potential in which two equally stable states are separated by a
34 kT (20 kcal/mol at room temperature) barrier. WE
simulations with a manual binning scheme (see Figure 2A for
bin positions) yielded no pathways from the initial state at X =
0.5 to the target state at X = 2.5 after 12 000 WE iterations,
occupying only 14% of the fixed bins (Figure 2B). In contrast,
the MAB scheme generated pathways to the target state in 60
WE iterations, occupying 99% of the bins (Figure 2C). This
greater efficiency is due to the identification of bottleneck
regions where the trajectory weights have sharply fallen. These
regions correspond to the upward slope of the free energy
barrier (Figure 2D).
Simulations of the Na+/Cl− Association Process. To

determine the effectiveness of the MAB scheme for a relatively
fast process (ns time scale), we simulated the Na+/Cl−

association process in explicit solvent (Figure 3A). Given the
modest free energy barrier for this process,36 it was feasible to
compute association rate constants using standard simulations,
providing validation of the rate constants computed using WE
simulations and manual/MAB binning schemes.
Table 1 shows the computed rate constants, the efficiencies

relative to standard simulations, and the number of successful

pathways for WE simulations with the MAB and manual
binning schemes. Regardless of the binning scheme, the WE
simulations yield rate constants that are within the error of the
value from standard simulations (see also Figure S1). Given
the modest free energy barrier for this process, there is only a
1.6-fold gain in efficiency for the MAB scheme relative to the
manual binning scheme (see Figure 3B for bin positions). The
MAB scheme also resulted in a 2-fold gain in the number of
successful pathways related to the manual binning scheme.
Consistent with our results for the double-well toy potential,
the majority (60%) of the bottleneck trajectories occupied bins
along the upward slope of the free energy barrier; the
remaining bottleneck trajectories (40%) occupied bins located
immediately before the target state (Figure 3C).
Conformational Sampling of the p53 Peptide. Given

that the WE strategy has previously enhanced the conforma-
tional sampling of various biomolecules,1,37 we applied the

MAB scheme to the conformational sampling of a p53 peptide
(Figure 4A). As expected, WE simulations using either the
MAB scheme or the previously reported manual binning
scheme38 yielded greater coverage of configurational space
than standard simulations with the same total computing time
(Figure 4B,C). The MAB scheme placed bins more efficiently
than the manual binning scheme, resulting in the occupation of
66% of the specified bins (29 out of 44 bins) compared to only
17% (50 out of 294 bins) for the manual binning scheme.
Notably, the MAB scheme sampled a “horn shaped” region of
the probability distribution which consists of primarily low-
probability trajectories. This region was not sampled when
using the manual binning scheme (or standard simulations)
and includes a more extensive set of left-handed helices as well
as PPII conformations, which have previously been identified
as the dominant state by UV resonance Raman spectroscopy.39

■ DISCUSSION
On average, the minimal adaptive binning (MAB) scheme
replicates more trajectories in steeper regions of the free energy
landscape. As mentioned above for the double-well toy
potential and Na+/Cl− system (Figure 2D and Figure 3C,
respectively), our MAB scheme identified bottleneck regions as
the upward slopes of the free energy barriers, immediately
before the barrier peaks (transition states). In contrast, a
recently published variance-reduction strategy, which also
seeks the most optimal placement of bins in weighted
ensemble simulations, has identified such regions as the
vicinity of the transition states; i.e., finer binning in transition-
state regions yields the lowest variance in an observable of
interest.19 This slight difference in the locations of the
bottleneck regions is likely due to the fact that the goals of
the MAB scheme and variance-reduction strategy are different.
The MAB scheme aims to surmount free energy barriers
whereas the variance-reduction strategy aims to minimize the
variance of an observable of interest.19 Our results suggest that
the MAB scheme would be particularly effective in
surmounting large barriers when used with a “committor”
coordinate,13,40−43 which tracks the probability that a given
system configuration will commit to the target state before
returning to the initial state: a nearly optimal, one-dimensional
progress coordinate for the rare-event process of interest.44,45

The MAB scheme identifies bottleneck trajectories using an
objective function that is easily extensible to track any arbitrary
value. In its current form, the objective function tracks the
probability of the trajectory in question along with the
cumulative probability of all trajectories that are further
along the progress coordinate of interest, all on a logarithmic
scale. This requirement of having some trajectories that have
surpassed the trajectory of interest makes it unlikely for
identified bottleneck trajectories to be ones that have departed
along orthogonal degrees of freedom (i.e., differentiating
between a leading trajectory and a bottleneck trajectory).
Alternatively, users may modify the objective function to track
the average or maximum probability among trajectories that
have surpassed the trajectory in question.
By identifying appropriate bin positions for use with other

key WE parameters (i.e., resampling interval τ and target
number of trajectories per bin), the MAB scheme greatly
reduces the need for trial-and-error selection of these
parameters, which are highly coupled to one another. To
maximize the “statistical ratcheting” effect of the WE strategy,
we recommend using the shortest possible τ-value that

Table 1. Computed Rate Constants for the Na+/Cl−

Association Process Using WE Simulations with the MAB
Scheme and Manual Binning Schemea

type of simulation
computed rate

constant (M−1 s−1)

total
simulation
time (μs) Sk

no. of
successful
pathways

WE simulations
with MAB
scheme

(3.9 ± 0.3) × 1010 1.0 5.1 2498

WE simulations
with manual
binning scheme

(4.1 ± 0.4) × 1010 1.0 3.1 1226

aUncertainties represent 95% confidence intervals determined by a t-
test. For each binning scheme, five WE simulations were run with
each yielding 0.2 μs of total simulation time. The efficiency Sk of WE
relative to standard simulations was calculated as described in
Methods. For reference, the computed rate constant based on five 1
μs standard simulations was (3.9 ± 0.3) × 1010 M−1 s−1.
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maintains high scaling of the WESTPA software with the
number of GPUs (or CPU cores) on a given computing
resource.38 Furthermore, our results indicate that a target
number of either 4 or 5 trajectories per bin is sufficient to
surmount large barriers or greatly enhance conformational
sampling. If the goal is to simply generate pathways to a target
state of interest, we recommend applying the MAB scheme
with the minimal number of bins (e.g., 5, with separate bins for
the two boundary trajectories and one bottleneck trajectory in
the direction of interest, and two bins between the boundary
trajectories) to reduce the total computational time required
for the simulation. On the basis of our tests with the double-
well toy potential, the number of bins does not affect the ability
of trajectories to reach the target state using the same total
computing time (Figure S2). However, if a greater diversity of
trajectories or a rate-constant estimate is desired, we
recommend applying the MAB scheme with a larger number
of bins (15−20) to replicate more trajectories and yield more
even coverage of configurational space along the progress
coordinate.

■ CONCLUSIONS

To streamline the execution of weighted ensemble (WE)
simulations, we developed a minimal adaptive binning (MAB)
scheme for automatically adjusting the positions of bins along a
progress coordinate. Our scheme adjusts bin positions
according to the positions of trailing, leading, and “bottleneck”
trajectories at the current WE iteration. Despite its simplicity,
the MAB scheme results in greater sampling of configurational
space relative to manual binning schemes for all three
benchmark processes of this study: (i) transitions between
states of a double-well toy potential; (ii) Na+/Cl− association;

and (iii) conformational sampling of a peptide fragment of the
tumor suppressor p53. Due to the earlier identification of
bottlenecks along the progress coordinate, the MAB scheme
enables the simulation of pathways for otherwise prohibitive
large-barrier processes and a greater diversity of pathways
when desired, all with dramatically fewer bins than manual
binning schemes. As demonstrated previously, the efficiency of
WE simulations relative to standard simulations is even greater
for slower processes, increasing exponentially with the effective
free energy barrier when the progress coordinate is
appropriately binned.46

We recommend the MAB scheme as a general, minimal
scheme for automating the placement of bins in combination
with any rare-event sampling strategy that requires a progress
coordinate. A particularly effective application of the scheme
could be its use with a committor coordinate, which is a nearly
optimal, one-dimensional progress coordinate for ordering
states along simulated pathways for a process of interest
according to a “kinetic ruler.” Regardless, the MAB scheme
provides an ideal launching point for future developments of
more sophisticated binning strategies by yielding initial,
promising bins for further optimization.
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Figure 4. Conformational sampling of a p53 peptide. Probability distributions as a function of the two-dimensional WE progress coordinate from
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sampled by standard simulations are delineated in red.
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